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The institution of a readily-implemented sample screening and data
handling procedure for in vitro skin penetration studies yields sub-
stantial improvements in sensitivity for distinguishing between for-
mulations, treatments, penetrants, etc. The procedure involves four
steps: 1) prescreen the tissue samples to determine their intrinsic
permeability; 2) apply treatments using a randomized complete
block (RCB) design, with blocking by tissue permeability; 3) apply a
variance-stabilizing transformation to the penetration data, followed
by outlier testing; and 4) analyze the transformed data according to
an RCB analysis of variance, using tissue permeability as the block-
ing variable. For penetration studies in which high sample variability
is a concern, the above procedure commonly yields a sensitivity
advantage of several-fold versus alternative methods of comparison.

KEY WORDS: in vitro skin penetration; human cadaver skin; sta-
tistics; data transformations; data analysis; sensitivity.

INTRODUCTION

Common objectives of in vitro skin penetration studies
include the selection of topical or transdermal drug formu-
lations, dermal exposure assessment for environmental tox-
ins, and estimation of the harshness of skin care products via
their effect on skin barrier function. The importance of
choosing the right model system for such studies (e.g., skin
species and thickness, dose, degree of occlusion, and recep-
tor phase composition) in order to obtain relevant results has
been well documented (1-7). This paper focuses on a sub-
sequent question: Having chosen the best available model
system for a penetration study, how can one maximize the
sensitivity of the test for distinguishing between treatments?
This question is particularly important when working with a
highly variable substrate such as human cadaver skin which,
despite its problems, is often the model of choice (5-7).
Implementation of the procedure described herein gives up
to three-fold higher sensitivity for distinguishing between
treatments in a single study. Furthermore, the tissue screen-
ing aspect can lead also to greater reproducibility of skin
penetration values between studies.

To show why the proposed experimental design and
analysis can significantly impact results, we first consider
the nature of cadaver skin penetration data. The complex
structure of skin with its multiple diffusion pathways and (in
vitro) its varying thickness and degree of damage leads to a
distribution of experimental penetration rates that is a func-
tion of exposure time and of the physicochemical properties
of the test compound.
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Report

Ionic compounds yield broad and highly right-skewed
permeability distributions in skin (8—10). Freshly excised
tissue yields less variable penetration data than does frozen
tissue (10). Our own experience extends these observations
to neutral but poorly lipid-soluble compounds that might be
expected to penetrate skin via polar pathways (GBK, unpub-
lished data). These facts alone lead us to associate the right-
skewed nature of the permeability distributions for these ma-
terials with microscopic damage incurred during tissue col-
lection and storage. The transport of ions and water-soluble
compounds that cannot easily penetrate the stratum cor-
neum lipid bilayers would be expected to be highly sensitive
to the number of defects present in the lipid barrier.

Figures 1 and 2 present evidence that the permeability
distributions for human cadaver skin to other agents, both
hydrophilic and lipophilic, are also highly skewed. In many
cases they can reasonably be taken to be lognormal, as
shown in the insets. Figure 1a shows a typical distribution of
water penetration values through samples of excised human
cadaver skin obtained from a single donor. The results were
obtained using the *H,O penetration test developed by Franz
and Lehman (11) and described in the Experimental section.
The tissue had been harvested at autopsy by standard meth-
ods and stored frozen (9). Other skin samples identically
prepared have had either narrower, more sharply peaked
distributions or broader, relatively flat distributions. In our
experience with this test, the primary difference from study
to study lies not in the mode of the distribution (usually
about 0.3-0.8 wL/cm?), but rather in the percentage of high
permeability samples. In other words, the permeability dis-
tributions differ in the weight of the right-skewed tail. We
have observed that freshly excised skin (either human sur-
gical waste or animal skin) tends to have a narrower, more
symmetrical permeability distribution than does skin bank
skin. However, the highly skewed distribution of cadaver
skin water permeability values obtained over a large number
of studies is clearly shown in Fig. 1b.

The data in Fig. 1b are skewed even if highly permeable
samples are excluded from the analysis. In fact, a good fit to
the lognormal (Shapiro-Wilk W = 0.981, p = 0.157) is ob-
tained even after excluding samples whose penetration val-
ues exceed Franz and Lehman’s acceptance criterion of 1.2
wL/em?.

Figure 2 shows that a lognormal distribution may also be
obtained with lipophilic compounds. This figure shows the
distribution of pooled penetration data from seven cadaver
skin penetration studies involving 36 different permeants
(12). The data for each compound have been normalized by
dividing by the median in order to remove differences related
to the center of the distributions and leave only information
related to shape. The linearity of the lognormal probability
plot and coincidence of the 50th percentile with the median
demonstrate how well the lognormal describes the pooled
data. Shapiro-Wilk testing supports this conclusion (W =
0.983, p = 0.465).

The test permeants in Fig. 2 were predominately small,
lipophilic compounds, although they included several weak
bases dosed as salts. Most of the latter compounds probably
diffused through the skin in their neutral form due to pH-
partition equilibria; in any case, their permeability distribu-
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Fig. 1. Frequency distribution of water penetration values through
split-thickness human cadaver skin using the 3H,O penetration test
described in the text. (a) Results from 66 samples derived from a
single donor. (b) Results from 539 samples derived from 7 donors.
The inset shows a lognormal probability plot of the distribution.

tions were not inordinately broad compared to other com-
pounds in the dataset. Terbutaline sulfate was a notable ex-
ception, yielding highly variable penetration data consistent
with the findings of Liu et al. (8).

Our subsequent experience with lipophilic compounds
has continued to support the distributional trend shown in
Fig. 2. Our findings thus differ from those of Liu et al., who
considered lipophilic compounds to have fairly symmetrical
distributions. However, their data are not inconsistent with
our results, as there is a suggestion of skewness to the li-
pophilic compound distributions despite the small number of
observations.

These data suggest three procedures that can profitably
be employed to improve both the sensitivity and reproduci-
bility of cadaver skin penetration studies. The first is to
screen the tissue samples for permeability prior to each test.
This allows one to eliminate unacceptable samples.

The second procedure uses the ‘‘accepted’’ tissue sam-
ples and their associated water permeability values to opti-
mally allocate treatments to the diffusion cells. Tissue sam-
ples are sequentially placed into the diffusion cells according
to the rank order of their water permeability values. Hence,
tissue samples are grouped into more inherently homoge-
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Fig. 2. Frequency distribution of steady state penetration rates of
assorted drugs and other lipophilic compounds through split-
thickness human cadaver skin about the median value for each com-
pound. The data are taken from Ref. 12. The plot shows results from
3—4 donors and 302 individual samples (242 samples after excluding
the medians). The inset shows the lognormal probability plot. The
compounds studied were acetaminophen, benzoic acid, benzyl al-
cohol, caffeine, clonidine hydrochloride, dextromethorphan. dex-
tromethorphan hydrobromide, diazepam, estradiol, ethacrynic acid,
S-fluorouracil, furosemide, griseofulvin, hydralazine hydrochloride,
hydrocortisone, ibuprofen, indolyl-3-acetic acid, indomethacin, iso-
sorbide dinitrate, ketoprofen, methyl salicylate, minoxidil, mor-
phine sulfate, naproxen, nicotinic acid, nifedipine, pentazocine,
pentazocine hydrochloride, piroxicam, propranolol hydrochloride,
salicylamide, salicylic acid, sulindac, terbutaline sulfate, testoster-
one, and triamcinolone acetonide.

neous ‘‘blocks.”” Random assignment of treatment replicates
into each of these blocks is called a Randomized Complete
Block (RCB) design. The subsequent analysis of variance of
this design (RCB ANOVA) is potentially much more precise
than a standard ANOVA. The RCB analysis compares treat-
ments within blocks and then pools these comparisons over
blocks. This takes the inherent block-to-block tissue vari-
ability out of the analysis and, in essence, compares treat-
ments on more homogeneous tissues. Thus one can actually
use knowledge of these inherent differences in tissue sample
permeability to one’s advantage, by designing and analyzing
such data appropriately (i.e., RCB ANOVA) so that the most
precise treatment comparisons can be made. Otherwise, if a
simple ANOVA is performed, the block-to-block tissue vari-
ability is not partitioned out and inflates the standard error of
the treatment comparisons, yielding less precise compari-
sons.

The third procedure involves the mathematical transfor-
mation of penetration values prior to analysis, followed by
outlier testing, so as to obtain more nearly normally distrib-
uted, equal variance responses. The transformation step can
be accomplished by either taking the logarithm or (more gen-
erally, as described in Appendix 1) by applying a quasi-
logarithmic transformation. Qutlier testing and elimination
can then be conducted using standard methods (13,14). This
procedure allows common parametric statistical tests to be
appropriately applied to the data; hence, valid conclusions
can be drawn regarding treatment comparisons. The combi-
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nation of these procedures leads to an extremely powerful
analysis.

EXPERIMENTAL SECTION

Human Skin and Diffusion Cells. Dermatomed (250
pwm) human cadaver skin was obtained from the Ohio Valley
Skin and Tissue Center, Cincinnati, OH. The skin was stored
frozen in a 10% glycerol solution prior to mounting in mod-
ified Franz diffusion cells (0.79 cm?) as described elsewhere
(9,15). The skin specimen provided sufficient tissue for 36
cells. The receptor compartments were stirred and main-
tained at 37°C by thermostatted heating-stirring modules
(15), yielding a skin surface temperature of 30-32°C. The
receptor solution was Dulbecco’s phosphate-buffered saline,
pH 7.4, containing 0.02% sodium azide to retard microbial
growth.

Skin Permeability Test. The procedure was similar to
that described by Franz and Lehman (11). Following an
equilibration period of 1-2 h, 150 pL of *H,0, specific ac-
tivity 0.4 nCi/mL, was applied to the epidermal surface of
each skin sample. At 5 minutes post-dose the tritiated water
was removed and the skin carefully blotted dry with a cot-
ton-tipped swab. At 60 minutes post-dose the receptor solu-
tion was removed for scintillation counting and replaced with
fresh buffer. The penetration samples were mixed with 10
mL of Ultima Gold scintillation cocktail (Packard) and
counted for 1 minute each on a Packard Model 1900 TR
automatic counter at an efficiency of 21%. All the tissue
samples were judged suitable for use based on *H,O pene-
tration values less than 1.6 wL/cm?.® The receptor solution
was exchanged a second time at 120 min post-dose and a
third time after an overnight equilibration period prior to
beginning the formulation study. Tests showed that this pro-
cedure reduced the residual radioactivity from *H,O to be-
low the detection level.

We selected the *H,O test because of the extensive da-
tabase on fresh tissue collected by Franz and Lehman; how-
ever, any rapid, nondestructive test could be substituted.
Electrical resistivity would seem to be a good alternative test
(9,10), especially for studies involving ionic permeants. Per-
meability to a volatile organic compound might provide a
better screen for lipophilic compounds. However, until ap-
propriate validation studies had been conducted, the advan-
tage of comparing penetration values with a known value in
undamaged tissue would be lost.

Skin Penetration Study. A proprietary skin care active
(MW 215, log Ky cianovwater = 1.26), radiolabeled with C at
a specific activity of 30 nCi/mg, was incorporated into a
simple solution (Formulation A) at a concentration of 0.1%
w/w. This formulation had been shown to be effective in
preclinical efficacy testing and thus provided a target deliv-
ery rate. Five prototype skin creams (Formulations B—F)

? Franz and Lehman found that freshly excised skin averaged 0.3~
0.4 pL/cm? and recommended an acceptance criterion of <1.2
pL/cm?. We use the latter value as a guideline, but may alter it
depending on whether the interest is in estimating human in vivo
penetration rates (adjust downward) or in obtaining relative infor-
mation regarding formulations (adjust upward). In any case we
would suggest excluding samples with water penetration values
above about 3 pL/cm?.
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consisting of different emulsion bases and varying amounts
of dissolved and suspended '*C-labeled active were then pre-
pared. The objective of the study was to identify the cream
formulation yielding the greatest delivery of active in 24 h
and to compare its delivery rate with that of Formulation A.

The 36 skin samples were arranged in order of perme-
ability (lowest to highest) based on the results of the *H,0O
skin permeability test. Each of the six formulations was then
applied to six skin samples in a randomized complete block
(RCB) design. In other words, each formulation was applied
at random to one of the six least permeable skin samples,
then to one of the six next-least-permeable samples, etc.,
until all of the 36 samples had been treated. The dose was 3
rL of formulation per cell, corresponding to approximately
0.1 nCi of radioactivity per cell and 4 mg of formulation per
square centimeter of skin.

Penetration samples consisting of a complete exchange
of the receptor solution in each cell were collected at 2, 4,
6.3, and 24 hours post-dose. The samples were analyzed as
in the *H,0 test, except that these samples were counted for
either 5 minutes or until 2% accuracy (2 SD) had been
achieved, whichever was shorter. The counting efficiency of
“C was 90%. Three blank samples were collected at each
time point to accurately determine the background radiation
level. Results were calculated at each time point as the cu-
mulative amount of active that had appeared in the receptor
solution. In no case did the amount penetrated exceed 20%
of the applied dose.

Data Analysis. In order to more fully satisfy implicit
ANOVA assumptions and, thus, ensure the validity of the
subsequent conclusions, a variance-stabilizing transforma-
tion was applied to the data. The cumulative penetration
values, Y, at each time point were transformed according to
Eq. (8) of Appendix 1 using the values a = 0.01 (ng/cm?)?
and b = 0.004 ng/cm®. These values correspond to an ana-
lyte detection limit, Va, of 0.1 ng/cm? or approximately 5
dpm. The parameter ¢ was assigned a value that decreased
with time, based on a preliminary evaluation of the data as
described in Appendix 2. This reflects the fact that the vari-
ance in the penetration data decreased as the study pro-
gressed. The values used were ¢ = 0.49, 0.16, 0.09, and 0.04
for times 2, 4, 6.3, and 24 h, respectively. For times greater
than 4 h, this transformation was equivalent to a simple log-
arithm [Eq. 2)] to within the experimental error. The pooled
residuals of the transformed data, calculated as described in
Appendix 2, were approximately normally distributed (e.g.,
at 24 h, Shapiro-Wilk W = 0.962, p = 0.307).

We examined the transformed data for outlying values
using Dixon’s method and the Maximum Normed Residual
Test (13,14). No outliers were identified by either method.
The transformed data were then analyzed using an RCB
ANOVA, with tissue permeability as the blocking variable.
Tukey’s Studentized Range (HSD) Test with an o value of
0.05 was used to create a multiple comparison table. Means
and standard errors were calculated for the transformed
data, then converted back to the original units for interpre-
tation using Eqs. (9) and (10). Since the transformation was
nearly logarithmic, this procedure estimated the geometric
mean, rather than the arithmetic mean, of the original data.
No correction for bias was necessary since we considered
the geometric mean (which corresponds to the median for a
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lognormal distribution) to be the more useful estimate of the
“‘center’’ of the distribution.

For comparative purposes we conducted several alter-
native analyses at the 24-h time point: RCB ANOVA on the
untransformed penetration data, one-way ANOVA (ignoring
blocking on tissue permeability) on both transformed and
untransformed data, and a nonparametric rank sum
(Kruskal-Wallis) test. We also conducted pairwise nonpara-
metric comparisons by the latter method (i.e., Wilcoxon
rank sum test).

For data reduction, transformation, and outlier testing
we used a BASIC program written by one of the authors. An
EXCEL spreadsheet implementing these calculations is also
available from the authors. For statistical testing we used
procedures GLM, UNIVARIATE, and NPARIWAY from
SAS Release 6.06 (SAS Institute Inc., Gary, NC), selecting
the Tukey option in PROC GLM for parametric pairwise
comparisons.

RESULTS

The results of the example skin penetration study are
shown in Fig. 3. This figure was prepared using the data
transformation and back-transformation steps in Eqs. (8-
10); hence, the advantages of the data transformation proce-
dure are already realized in this representation of the data.
According to this representation Formulation A, the simple
solution, yielded the greatest penetration of active com-
pound for all time points. It was of interest to determine
which of the cream formulations B, . . . ,F differed signifi-
cantly from Formulation A or from each other.

The results of statistical tests performed on the cumu-
lative 24-h penetration values are summarized in Table I.
Formulations E and F can be seen to deliver significantly
less active across the skin than does Formulation A, accord-
ing to the recommended analysis (Column 1). The alternative
methods of analysis are not as sensitive. In particular, direct
averaging of the penetration data followed by a one-way
ANOVA (Column 4) fails to reveal any significant differences
between treatments. The nonparametric analysis (Column 5)
and the RCB analysis of the untransformed data (Column 2)
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Fig. 3. Cumulative amount of active compound penetrated versus
time for the example penetration study. Each point represents the
(nearly) geometric mean * SE (n = 6), calculated by transforming
the data according to Eq. (8), averaging, and then back-transforming
according to Eqgs. (9) and (10).

Kasting, Filloon, Francis, and Meredith

do distinguish Formulation F from Formulation A, but their
lower discriminatory power is evident.

DISCUSSION

The sensitivity advantages of the experimental design
and analysis described herein derive from two sources—1)
recognition of the potential for a highly skewed distribution
of skin permeability values [supported for the frozen, split-
thickness cadaver skin substrate by the data presented here
and in Refs. 8—10] and 2) the ability to remove some of the
tissue-to-tissue variability via an RCB design and analysis.
In order to estimate the sensitivity increase afforded by each
factor, we discuss below the sample size requirements for a
prospective skin penetration study using the example data as
pilot information. In this analysis we assume that the distri-
bution of sample permeabilities is approximately lognormal
as found in the example penetration study (i.e., log,, perme-
ability is normally distributed). Therefore, we use normal
distributional theory for sample size determinations. We are
determining what sample sizes are needed to detect a given
treatment difference, with 95% confidence and 80% power.

Specifically, we consider the following question: What
are the necessary sample sizes for detecting log,, treatment
differences of 0.3, 0.6, and 0.9 units using each of the anal-
ysis methods in Table 1? These differences reflect 50%, 75%
and 87.5% reductions in mean level. For the experimental
data presented in Fig. 3, where the control (i.e., Formulation
A) mean at 24 h was approximately 700 ng/cm?, this would
correspond to changes of 350, 525, and 610 ng/cm?, respec-
tively.

In order to answer this question, we need an estimate of
the sample variability in a typical penetration study. We can
use the individual sample data 24 h post-dose from the study
shown in Fig. 3 for this purpose. Expressed in terms of the
Mean Squared Error (MSE), the sample variability is as fol-
lows for each ANOVA method:

Untransformed Transformed
One-Way RCB One-Way RCB
0.439 x 10° 0.218 x 10¢ 0.116 0.045

Using the above variability estimates and a standard
power analysis method for normally distributed data (16) and
its nonparametric counterpart (17), the sample sizes required
to detect various magnitudes of treatment differences (with
95% confidence and 80% power) can be determined. The
nonparametric approach implicitly uses the lognormal distri-
butional assumption. For the ANOVA methods, the neces-
sary sample size has been approximated by 16 x (MSE)/
(Difference x Difference) as per Lehr’s approach (18). This
alone allows one to see that sample sizes will be 2-3 fold
higher for the one-way versus RCB ANOVA methods. Also,
intuitively, the transformed analysis should show an advan-
tage over the untransformed analysis as its variability esti-
mate is not inflated due to its long-tailed distribution (i.e.,
skewness).

The results of this calculation are shown in Table II. The
sensitivity advantage provided by the data-transformed RCB
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Table I. Ranking of 24-h Cumulative Penetration Values According to Several Meth-
ods of Analysis. Brackets Denote Groups Which are not Statistically Different at
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p = 0.05
Analysis: RCB ANOVA One-Way ANOVA Nonparametric
Data transformed? Yes No Yes No
Rank
1 A A A A B
2 B B B B A
3 C D C D E
4 D C D C C
5 E E E E D
6 F F F F F
p value for overall
group differences 0.0016 0.076 0.088 0.361 0.055

(F or x* test)

ANOVA approach is clearly evident from this analysis. In
particular, if one considers a two-fold difference in mean
penetration (i.e., log ,, change of 0.3) to be of practical sig-
nificance in a formulation study, the attractiveness of detect-
ing this difference with a group size of 8 rather than 20-30 is
hard to overlook. In such cases the time invested in careful
attention to experimental design and analysis can be quickly
recovered by reduction of the time spent in execution of the
studies.

The data transformation approach described here is de-
rived from the work of Bartlett (19). The motivating factor is
variance stabilization in order to yield a more efficient anal-
ysis. Such transformations usually normalize the data also so
that the transformed data satisfy the implicit ANOVA as-
sumptions of normally distributed, same variance treatment
groups. Other transformation approaches to achieve nor-
mally distributed data, such as the Box-Cox method (20), Z
= (Y* — 1)/, may also stabilize variances by coincidence,
but represent a different tact from what we have attempted
here. The strengths of the present approach are that it is
data-based and provides for variance stabilization and
smooth data handling in both signal-limited and non-signal-
limited cases. In the former case the recommended transfor-
mation [either Eq. (5) or (8)] smoothly handles the zero and
negative data values that frequently arise, using transforma-
tion coefficients estimated from the experiment. In the latter
case the transformation reduces to the simple, but powerful

logarithm [Eq. (2)], which is coefficient-free. The data trans-
formation step can thus be readily automated.

The RCB experimental design and analysis is enabled
by the tissue permeability screen at the outset of the study.
This procedure also allows for rejection of poor quality sam-
ples. Franz and Lehman’s work with *H,0 (11) has facili-
tated this step, although alternative screening procedures are
possible. The combination of sample rejection, variance sta-
bilization, and RCB ANOVA procedures leads to an ex-
tremely powerful analysis. The sensitivity improvement af-
forded by these procedures can reduce the execution time
and improve the quality of the data generated in cadaver skin
penetration studies.

APPENDIX 1

Data Transformations for Skin Penetration Studies

In this section we develop data transformations suitable
for analyzing experiments in which a variance-stabilizing
transformation is desired. In the case where most of the
experimental variation arises from a single source (as it may
from the tissue samples in a typical penetration study), a
simple, coefficient-free transformation such as the logarithm
is often appropriate. However, when a second source of er-
ror comes importantly into play, the simple transformation
may be inappropriate or even impossible to carry out. We

Table II. Group Size (n) Required to Detect Various Magnitudes of Treatment Dif-
ference, with 95% Confidence and 80% Power, Using the Example Penetration Data

Analysis: RCB ANOVA One-Way ANOVA Nonparametric
Data transformed? Yes No Yes No
Treatment difference
(log,, change)
0.3 8 14 21 28 25
0.6 2 7 5 13 9
0.9 12 5 2 9 6

2 A sample size of 1 is displayed here for descriptive purposes only, as at least 2
samples are needed per group for statistical tests to be performed.
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give below two quasi-logarithmic data transformations to
deal with this issue. Unlike a simple logarithm, these trans-
formations can be used to analyze data in which extremely
low signal levels lead occasionally to zero or negative data
values.

Derivation of a variance-stabilizing transformation pro-
ceeds as follows. Consider a positive-valued random vari-
able Y whose variance is related to the square of its mean
value according to Eq. (1):

ell: o> = cp®¢c>0 (1)

In this model, the standard deviation, o, is directly pro-
portional to the mean, . The coefficient of variation, CV =
o/, is stable. It is well known that the appropriate variance-
stabilizing transformation for Model 1 is given by:

Z =log,,Y 2)

where the base 10 logarithm has been chosen as a matter of
preference. Typically, the variable Y is assumed to be log-
normally distributed; if so, Z is normally distributed. As-
sumptions necessary for classical ANOVA calculations and
inferences are satisfied for the transformed data. As shown
in the text, experimental cadaver skin penetration data for
both hydrophilic and lipophilic penetrants support the use of
Eq. (2) in analyzing skin penetration studies.

The problem is to find suitable transformations when the
model is not so simple. In particular, the CV may be large
when the response, Y, is small. The signal is lost in the noise
of the measurement technique at the lower extreme, result-
ing in a large CV for small Y even though the CV becomes
constant for higher response. Y may possibly assume zero or
negative values. The precision of the measurement tech-
nique must be incorporated into the model and, therefore,
the transformation. We consider two realistic models.

Model2:0° = a + cp*;a>0,¢ >0 (3)

In this model there are variance components due to
noise in the measurement technique (i.e., a) and due to vari-
ability in the experimental material under study (i.e., cp?).
From a variance components point of view, it would appear
reasonable to assume that Model 2 holds in the ‘‘limit of
detectability’’ problem when the sample being studied has
the intrinsic properties of Model 1. Model 2 could be appro-
priate for a skin penetration study in which the detection
technique has a fixed sensitivity limit (e.g., s = Va). We
have found it to be useful, for example, for studies in which
the analysis is conducted by HPLC.

The limitations of a log transform in this case are readily
apparent: it will fail if random signal fluctuations yield zero
or negative values of Y. This problem can be partially rem-
edied by adding a constant value to Y prior to log transfor-
mation (21), Z = log,, (Y + d). However, this approach is
difficult to justify on a theoretical basis, and the problem of
choosing an appropriate value of d is non-trivial. Variance
stabilization at low signal levels cannot be ensured. We de-
scribe below an alternative procedure that utilizes the vari-
ance components for Model 2. The cost is that the experi-
menter must estimate the coefficient ratio a/c.

Following the approach of Bartlett (19), the variance-
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stabilizing transformation for Model 2 can be found from the
following integral:

d 1
f—\/aj—:cﬁ = Vzloge (y\/z + \/a +cy2) 4)

An appropriate transformation is given by:

Z = log,, (oY + BWVY? + alo) )

In Eq. (5) we chose the normalization factor of /> and the
base 10 logarithm in order to yield Eq. (2) when ¥Y? > a/c.
Thus Z is equal to the base 10 logarithm of the penetration
value Y when the signal level is high.

In a similar vein, variance-stabilizing transformations
can be derived for more complicated variance models. In
Appendix 2 we show that Model 3 can arise from a radio-
chemical skin penetration experiment in which statistical
counting error contributes to the error in the measurement.

Model3: 62 = a + bp + cp*;a>0,b>0,c >0 (6)

As before, the variance-stabilizing transformation can be
found from the integral:

&
\a+ by + c?
1
— log, (2\/ac + bey + By + 2¢y + b)
Ve

An appropriate transformation is:

Z = log,, (AVY? + (B/0)Y + alc + V2Y + Vablc) (8)

U

Like Eq. (5), Eq. (8) reduces to Eq. (2) for large values of Y.
We used Eq. (8) to transform the example penetration data
after estimating the values of a, b, and ¢ as described in
Appendix 2.

After averaging the data and performing statistical com-
parisons in the transformed units, it is often desirable to
undo the transformation for presentation of the results. The
reverse transforms for Egs. (2), (5), and (8) are easily ob-
tained by algebraic rearrangement. For example, the reverse
transform for Eq. (8) is:

Y = (4Y,2 — alo)dY, + blc) )]
where Y, is defined as:

Yo = 107 — Viblc. (10)

It is prudent to apply a normality test (¢.g., the Shapiro-Wilk
test) to the transformed data to ensure that an appropriate
transformation has been made. If non-normality is detected,
the same test may be applied to the untransformed data and
the decision as to whether or not to transform the data based
on this result. An example of a case in which logarithmic or
quasi-logarithmic transforms should often not be made is
that of finite dose penetration experiments in which a sub-
stantial fraction (i.e., >30%) of the applied dose of active
penetrates each skin sample. In this case the distribution of
penetration values will no longer be strongly positively-
skewed. Although it is possible to construct variance models
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which take this feature into account, the corresponding data
transformations are not easily obtained. In such cases the
best solution is often to eliminate the data transformation
step.

APPENDIX 2

Coefficients for Data Transformations

In this section we show how to estimate the value of the
coefficients a, b, and ¢ for the quasi-logarithmic data trans-
formations in Appendix 1. Since these transformations re-
duce to the logarithm [Eq. (2), which is coefficient-free] for
all but the lowest signal levels, the coefficients need not be
known to a high degree of accuracy for the transformation
approach to be of value. The use of the more complex ex-
pressions simply yields transformed values Z which are
more stable at low signal levels than those calculated from
Eq. (2).

Accounting for Measurement Error (Estimation of a
and b)

As discussed in Appendix 1, a measurement technique
with a fixed sensitivity s adds a constant term to the exper-
imental variance which, when combined with a right-skewed
distribution for skin permeability, leads to variance model 2
[Eq. (3)]. The parameter a in this case is calculated from the
relationship s = Va, and ¢ is estimated as described below.
Data transformation is accomplished using Eq. (5).

For radiochemical experiments statistical counting
noise at low signal levels can lead to variance model 3 {Eq.
(6)]. The appropriate data transformation in this case is given
by Eq. (8). To estimate the coefficients we proceed as fol-
lows: Let X = sample radioactivity level in counts per
minute (cpm). T = sample counting time in minutes, B =
background radioactivity level in counts per minute, ¢, =
error (standard deviation) in background level, A = conver-
sion factor from cpm to experimental units, ¥ = sample
active level in experimental units. Then, by definition,

Y=AX - B (11)

The error in ¥ may be assumed to come from three factors:
X, B, and the tissue variability. By propagating the errors in
Eq. (11) we have:

ar\? ar\?
2 _ 2 2
oy = (aTY) g, + (a—;> o + cp,2

where the third term on the right derives from the underlying
skin permeability distribution [as in Eq. (6)]. The error in X
may be calculated from a Poisson statistical model as o3 =
X/T = BIT + wWAT. Here we have made use of Eq. (11) and
then let w represent the mean value of Y to obtain the second
relationship. Substitution of the appropriate derivatives and
error terms into Eq. (12) yields:

12)

0% = AXBIT + WAT) + Ao + cp?

= A¥o} + BIT) + (AIDu + cp? 3
Comparing Eq. (13) with Eq. (6) we find:
a = A¥o3 + BIT); b = AIT (14)
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Thus, the coefficients a and b in Egs. (6—10) are functions of
the unit conversion factor A, the background level B, its
variance ¢}, and the sample counting time 7. These factors
are readily available to the experimenter. (The experimental
background variance estimator, s3, may be substituted for
o to calculate a.)

Variance of Skin Permeability Values (Estimation of ¢)

The variance coefficient ¢ characterizing the skin per-
meability distribution can be derived from either the *H,O
screening data or from the test permeant penetration values
at any point in the experiment. We recommend the latter
method, as the test permeant results may have quite a dif-
ferent distribution than the water permeation data and, fur-
thermore, their distribution changes over time. Although the
number of replicates for each treatment is usually too small
to determine the underlying distribution for that treatment,
one can obtain distributional estimates under the assumption
that the treatments affect only the location, and not the
shape, of the permeability distribution. Under this assump-
tion one can combine the data from different treatments after
normalizing to account for the change in location. An exam-
ple was shown in Fig. 2.

Using the pooled data approach, suitable values for c, as
well as a normality check on transformed data, can be ob-
tained as follows: 1) Estimate a and b as described above.
Make an initial estimate for ¢ at each sampling time from the
test permeant penetration results, based on previous expe-
rience [the values range from about ¢ = 0.01 for narrowly
distributed data to ¢ = 0.5 for highly variable data]. 2) Trans-
form the penetration data according to either Eq. (5) or (8),
and calculate the one-way ANOVA model for transformed
data at each sampling time. 3) Calculate the variance of the
residuals from each ANOVA model. These values represent
refined estimates for ¢. The residuals may be examined for
normality. 4) Retransform and reanalyze the original data
according to the RCB ANOVA model using the refined es-
timates for c. In practice, the retransformation step can often
be omitted and the RCB ANOVA model calculated directly
as one gains experience with the method.

It is also apparent that ¢ is related to the slope of the
lognormal probability plot, e.g., the insets for Figs. 1 and 2.
More precisely, the slope is equal to Vc. Thus, an alterna-
tive procedure for estimating c is to regress log-transformed
penetration values on normal scores to obtain the slope. For
example, regression analysis of the data in Fig. 2 yields
V¢ = 0.31, or ¢ = 0.096, with an r? value of 0.992. Direct
calculation of the variance, as suggested above, yields the
same result.
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